(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

#### **Features**

- 4G/5G pseudo omni configuration with 16 connectors
- Features separate port for integrated GPS unit
- Ideal for multi-carrier or 4X4 MIMO deployments
- New, enhanced mechanical and antenna design
  - Easily removable lifting ring
  - Extended CBRS Band
  - Improvements in gain, port isolation and VSWR
- This antenna meets the requirements of the U-NII
- Available for order with a grey, brown or black radome



|        | F D (MIL)               | GPS BAND MID BAND                                  |       |          |         | CBRS BAND |          | LAA BAND |                |            |  |  |
|--------|-------------------------|----------------------------------------------------|-------|----------|---------|-----------|----------|----------|----------------|------------|--|--|
|        | Frequency Range (MHz)   | 1575.42 MHz ± 10 MHz                               |       | (4x) 169 | 25-2700 |           | (2x) 330 | 00-4200  | (2x) 5150-5925 |            |  |  |
| >      | Array                   |                                                    | Y1    | ■ Y2     | Y3      | Y4        | ■ P1     | ■ P2     | <b>O</b> 1     | <b>O</b> 2 |  |  |
| /ERVIE | Connector               | 1 PORT                                             |       | 8 PC     | RTS     |           | 4 PORTS  |          | 4 PORTS        |            |  |  |
| VER    | Polarization            | RIGHT HAND CIRCULAR                                | XPOL  |          |         |           | XPOL     |          | XPOL           |            |  |  |
| Ó      | Azimuth Beamwidth (avg) |                                                    | 360°  |          |         |           | 360°     |          | 360°           | 360°       |  |  |
| C C    | Electrical Downtilt     |                                                    | 0° 0° |          |         | )°        |          |          |                |            |  |  |
| PRODI  | Configuration           | OMNI CONFIGURATION WITH INTEGRATED GPS UNIT        |       |          |         |           |          |          |                |            |  |  |
| 4      | Connector Type          | (16x) 4.3-10 FEMALE and (1x) N-TYPE FEMALE FOR GPS |       |          |         |           |          |          |                |            |  |  |
|        | Dimensions              | 626 x Ø371 mm (24.6 x Ø14.6 in)                    |       |          |         |           |          |          |                |            |  |  |
|        | Radome Color Options    | GREY, BROWN or BLACK                               |       |          |         |           |          |          |                |            |  |  |

| AL SPECIFICATIONS          | Mid Band                                                                                               | ■ Y1 ■ Y2 ■ Y3 ■ Y4                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ange                       | MHz                                                                                                    | (4x) 1695-2700                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| ub-Range                   | MHz                                                                                                    | 1695-1880                                                                                                                                                                | 1850-1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1920-2200    | 2300-2700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                            |                                                                                                        |                                                                                                                                                                          | (4x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±45°         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| BASTA                      | dBi                                                                                                    | 9.5 ± 0.6                                                                                                                                                                | 9.5 ± 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.4 ± 0.5    | 9.7 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| MAX                        | dBi                                                                                                    | 10.1                                                                                                                                                                     | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9          | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Azimuth Beamwidth (3 dB)   |                                                                                                        | 360°                                                                                                                                                                     | 360°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 360°         | 360°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Elevation Beamwidth (3 dB) |                                                                                                        | 21.2° ± 2.0°                                                                                                                                                             | 19.6° ± 1.2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.6° ± 1.7° | 15.3° ± 1.9°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| wntilt                     | degrees                                                                                                | (x) 2°, 4°, 6°                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                            | Ohms                                                                                                   | 50Ω                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                            |                                                                                                        | ≤ 1.5:1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                            | dBc                                                                                                    | < -153                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Upper Sidelobe Suppression |                                                                                                        | N/A                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Intraband                  | dB                                                                                                     | > 25                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Interband                  | dB                                                                                                     | > 28                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| ·                          | Watts                                                                                                  | 300W                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                            | BASTA MAX mwidth (3 dB) amwidth (3 dB) wntilt  modulation r 2x20 W Carriers bbe Suppression  Intraband | BASTA dBi MAX dBi mwidth (3 dB) degrees amwidth (3 dB) degrees whilt degrees Ohms modulation r 2x20 W Carriers obe Suppression dB Intraband dB Interband dB Interband dB | modulation r 2x20 W Carriers  mind and a modulation r 2x20 W Carriers  modulation of the first and t | MHz          | ange       MHz       (4x) 1695-2700         ub-Range       MHz       1695-1880       1850-1990       1920-2200         BASTA       dBi       9.5 ± 0.6       9.5 ± 0.4       9.4 ± 0.5         MAX       dBi       10.1       9.9       9.9         mwidth (3 dB)       degrees       360°       360°       360°         amwidth (3 dB)       degrees       21.2° ± 2.0°       19.6° ± 1.2°       18.6° ± 1.7°         wntilt       degrees       (x) 2°, 4°, 6°         Ohms       50Ω          ≤ 1.5:1         modulation or 2x20 W Carriers       dB       N/A         Intraband       dB       N/A         Intraband       dB       > 25         Interband       dB       > 28 |  |  |  |  |



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

| ELECTRICAL SPECIFICATIONS CBRS Band |                                 |         | ■ P1 ■ P2      |  |
|-------------------------------------|---------------------------------|---------|----------------|--|
| Frequency R                         | ange                            | MHz     | (2x) 3300-4200 |  |
| Polarization                        |                                 |         | (2x) ±45°      |  |
| 6 :                                 | BASTA                           | dBi     | 5.9 ± 0.8      |  |
| Gain                                | MAX                             | dBi     | 6.7            |  |
| Azimuth Bea                         | mwidth (3 dB)                   | degrees | 360°           |  |
| Elevation Beamwidth (3 dB)          |                                 | degrees | 29.5° ± 6.1°   |  |
| Electrical Downtilt                 |                                 | degrees | <b>(y)</b> 0°  |  |
| Impedance                           |                                 | Ohms    | 50Ω            |  |
| VSWR                                |                                 |         | ≤ 1.5:1        |  |
| Passive Inter<br>3rd Order fo       | modulation<br>r 2x20 W Carriers | dBc     | N/A            |  |
| Upper Sidel                         | bbe Suppression                 | dB      | N/A            |  |
| In all art and                      | Intraband                       | dB      | > 25           |  |
| Isolation                           | Interband                       | dB      | > 28           |  |
| Input Power                         | ·                               | Watts   | 100W           |  |

| ELECTRICAL SPECIFICATIONS LAA Band |                                     |         | ■ O1 ■ O2       |
|------------------------------------|-------------------------------------|---------|-----------------|
| Frequency                          | Range                               | MHz     | (2x) 5150-5925  |
| Polarization                       | Polarization                        |         | (2x) ±45°       |
|                                    | BASTA                               | dBi     | 5.1 ± 0.9       |
| Gain                               | MAX                                 | dBi     | 6.0             |
| Azimuth Be                         | eamwidth (3 dB)                     | degrees | 360°            |
| Elevation E                        | Elevation Beamwidth (3 dB)          |         | 20.4° ± 4.7°    |
| Electrical D                       | Electrical Downtilt                 |         | ( <b>y</b> ) 0° |
| Impedance                          | Impedance                           |         | 50Ω             |
| VSWR                               |                                     |         | ≤ 1.5:1         |
|                                    | ermodulation<br>for 2x20 W Carriers | dBc     | N/A             |
| Upper Side                         | elobe Suppression                   | dB      | > 13            |
| 1. 1                               | Intraband                           | dB      | > 25            |
| Isolation                          | Interband                           | dB      | > 28            |
| Input Powe                         | Input Power                         |         | 50W             |
| U-NII Com                          | pliant                              |         | Yes             |



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

### GPS UNIT Integrated

| GI 5 GITT Integrated  |                                          |  |  |  |  |  |
|-----------------------|------------------------------------------|--|--|--|--|--|
| Frequency Range       | 1575.42 MHz ± 10 MHz                     |  |  |  |  |  |
| Polarization          | Right Hand Circular                      |  |  |  |  |  |
| Nominal Gain          | 3 dBic at 90°; -2 dBic at 20°            |  |  |  |  |  |
| Current Draw          | 22 mA @ 5V                               |  |  |  |  |  |
| Out-of-Band Rejection | > 55 dB at 1559 MHz; > 60 dB at 1625 MHz |  |  |  |  |  |
| Amplifier Gain        | 28 dB ± 3 dB                             |  |  |  |  |  |
| Nominal Impedance     | 50 ohm                                   |  |  |  |  |  |
| Noise Figure          | 3.9 dB                                   |  |  |  |  |  |
| DC Voltage            | 2.7-5.5 VDC                              |  |  |  |  |  |
| VSWR                  | < 2.0:1                                  |  |  |  |  |  |
| Connector             | N-Type Female                            |  |  |  |  |  |
|                       |                                          |  |  |  |  |  |

(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

#### **MECHANICAL SPECIFICATIONS**

| anna         | Height                    | Height      |            | 626 (24.6)                                                          |  |  |  |  |
|--------------|---------------------------|-------------|------------|---------------------------------------------------------------------|--|--|--|--|
| Antenna      | Diameter                  |             | mm (in)    | 371 (14.6)                                                          |  |  |  |  |
| Net W        | Net Weight - Antenna Only |             |            | 13.2 (29)                                                           |  |  |  |  |
| Windload     |                           | Calculation | km/h (mph) | 160 (100)                                                           |  |  |  |  |
| vvinai       | oad                       | Frontal     | N (lbf)    | 191 (43)                                                            |  |  |  |  |
| Surviv       | Survival Wind Speed       |             |            | 241 (150)                                                           |  |  |  |  |
| Wind         | Wind Area                 |             |            | 0.22 (2.4)                                                          |  |  |  |  |
| Volum        | ie                        |             | m³ (ft³)   | 0.07 (2.3)                                                          |  |  |  |  |
| <u> </u>     |                           | Туре        |            | (16x) 4.3-10 Female and (1x) N-Type Female for GPS                  |  |  |  |  |
| Conne        | ector                     | Position    |            | Bottom                                                              |  |  |  |  |
| Radome Color |                           |             |            | Grey (Pantone 420 C),<br>Brown (Pantone 476 C),<br>Black (RAL 9011) |  |  |  |  |
| Lightn       | ning Protection (Groun    | nding Type) |            | Direct Ground                                                       |  |  |  |  |



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

#### ARRAY LAYOUT Topology

| ARRAI LAI OOI Topology |           |                 |       |                    |  |  |  |  |  |
|------------------------|-----------|-----------------|-------|--------------------|--|--|--|--|--|
| FREQUENCY              |           | ARRAY CONNECTOR |       | CONNECTOR TYPE     |  |  |  |  |  |
|                        | 1695-2700 | ■ Y1            | 1-2   | (2x) 4.3-10 Female |  |  |  |  |  |
| MID BAND               | 1695-2700 | ■ Y2            | 3-4   | (2x) 4.3-10 Female |  |  |  |  |  |
| MID BAND               | 1695-2700 | ■ Y3            | 5-6   | (2x) 4.3-10 Female |  |  |  |  |  |
|                        | 1695-2700 | ■ Y4            | 7-8   | (2x) 4.3-10 Female |  |  |  |  |  |
| CBRS BAND              | 3300-4200 | ■ P1            | 9-10  | (2x) 4.3-10 Female |  |  |  |  |  |
| CBR3 BAIND             | 3300-4200 | ■ P2            | 11-12 | (2x) 4.3-10 Female |  |  |  |  |  |
| LAA BAND               | 5150-5925 | <b>O</b> 1      | 13-14 | (2x) 4.3-10 Female |  |  |  |  |  |
| LAA DAND               | 5150-5925 | <b>O</b> 2      | 15-16 | (2x) 4.310 Female  |  |  |  |  |  |
| GPS BAND               | 1575.42   |                 | 17    | (1x) N-Type Female |  |  |  |  |  |



The illustration is not shown to scale.



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

# 4U4MT360X06Fxys4-GPS

#### **BOTTOM VIEW - LABELING**



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

#### **BOTTOM VIEW - CONNECTOR DIAGRAM**



**INSTALLATION** Please read all installation notes before installing this product.



Always attach the antenna using all mounting points.

Do not install the antenna with the connectors facing upwards.



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

# 4U4MT360X06Fxys4-GPS

MOUNTING KITS Select from the follow

| MODEL NUMBER    | DESCRIPTION                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| CWT-MKS-SIDE    | SIDE MOUNTING BRACKET KIT FOR CANISTER ANTENNA                                                                                                          |
| CWT-MKS-TOP     | TOP MOUNTING BRACKET KIT FOR CANISTER ANTENNA                                                                                                           |
| WB3X-MKS-01     | UTILITY POLE MOUNTING BRACKET KIT FOR CANISTER ANTENNA                                                                                                  |
| CWT-MKS-BASE-xx | WIDE DIAMETER POLE TOP MOUNTING BRACKET KIT FOR CANISTER ANTENNA. AVAILABLE IN BROWN, BLACK AND GREY TO MATCH ANTENNA RADOME AND/OR MOUNTING STRUCTURE. |



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz

OMNI

24.6 IN FIXED TILT

## 4U4MT360X06Fxys4-GPS

### HOW TO READ THE MODEL NUMBER Each letter and number has meaning.

|                       | ER OF BA              |                       | PATTERN<br>TYPE | AZIMUTH<br>BMWDTH | POLARIZA-<br>TION | LENGTH        | TILT<br>TYPE  | TILT<br>OPTIONS                                                                                                        | CONNECTOR<br>TYPE   | VARIATION                                         | RADOME<br>COLOR<br>OPTIONS                                                                                                                                        | GPS                                         |
|-----------------------|-----------------------|-----------------------|-----------------|-------------------|-------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 4U                    | 41                    | M                     | Т               | 360               | X                 | 06            | F             | xy                                                                                                                     | S                   | 4                                                 | BK<br>BR                                                                                                                                                          | -GPS                                        |
| (4x)<br>1695-<br>2700 | (2x)<br>3300-<br>4200 | (2x)<br>5150-<br>5925 | Tri-Sector      | 360°              | XPOL              | 0.6<br>meters | Fixed<br>Tilt | These letters are placeholders for fixed tilt options.  Refer to Electrical Specifications for available tilt options. | 4.3-10<br>Connector | Generation<br>4 enhanced<br>mechanical<br>package | BK indicates a<br>Black radome.<br>BR indicates a<br>Brown radome.<br>The default<br>radome color<br>is Grey. No<br>letters are<br>required for a<br>Grey radome. | Indicates<br>an inte-<br>grated<br>GPS unit |

#### **ORDERING OPTIONS** Select from the following ordering options

| SELECT        | SELECT DEGREE OF ELEC      | ORDER     |          |                                          |
|---------------|----------------------------|-----------|----------|------------------------------------------|
| RADOME COLOR  | MID BAND                   | CBRS BAND | LAA BAND | MODEL NUMBER                             |
|               | 2°                         | 0°        | 0°       | 4U4MT360X06F <b>20</b> s4-GPS            |
|               | 4°                         | O°        | 0°       | 4U4MT360X06F <b>40</b> s4-GPS            |
| Grey          | 6°                         | O°        | 0°       | 4U4MT360X06F <mark>60</mark> s4-GPS      |
| Pantone 420 C | Y1 & Y2 = 2°; Y3 & Y4 = 6° | O°        | 0°       | 4U4MT360X06F <b>AA</b> s4-GPS            |
|               | Y1 & Y2 = 2°; Y3 & Y4 = 4° | O°        | 0°       | 4U4MT360X06FBBs4-GPS                     |
|               | Y1 & Y2 = 4°; Y3 & Y4 = 6° | O°        | 0°       | 4U4MT360X06FCCs4-GPS                     |
|               | 2°                         | O°        | 0°       | 4U4MT360X06F <b>20</b> s4 <b>BR</b> -GPS |
|               | 4°                         | O°        | 0°       | 4U4MT360X06F <b>40</b> s4 <b>BR</b> -GPS |
| Brown         | 6°                         | O°        | 0°       | 4U4MT360X06F60s4BR-GPS                   |
| Pantone 476 C | Y1 & Y2 = 2°; Y3 & Y4 = 6° | O°        | 0°       | 4U4MT360X06FAAs4BR-GPS                   |
|               | Y1 & Y2 = 2°; Y3 & Y4 = 4° | 0°        | 0°       | 4U4MT360X06FBBs4BR-GPS                   |
|               | Y1 & Y2 = 4°; Y3 & Y4 = 6° | 0°        | 0°       | 4U4MT360X06FCCs4BR-GPS                   |
|               | 2°                         | 0°        | 0°       | 4U4MT360X06F <b>20</b> s4 <b>BK</b> -GPS |
|               | 4°                         | 0°        | 0°       | 4U4MT360X06F <b>40</b> s4 <b>BK</b> -GPS |
| Black         | 6°                         | 0°        | 0°       | 4U4MT360X06F60s4BK-GPS                   |
| RAL 9011      | Y1 & Y2 = 2°; Y3 & Y4 = 6° | 0°        | 0°       | 4U4MT360X06FAAs4BK-GPS                   |
|               | Y1 & Y2 = 2°; Y3 & Y4 = 4° | O°        | 0°       | 4U4MT360X06FBBs4BK-GPS                   |
|               | Y1 & Y2 = 4°; Y3 & Y4 = 6° | 0°        | 0°       | 4U4MT360X06FCCs4BK-GPS                   |

(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz OMNI

24.6 IN FIXED TILT



(4x) 1695-2700 | (2x) 3300-4200 | (2x) 5150-5925 MHz



OMNI

24.6 IN FIXED TILT

# 4U4MT360X06Fxys4-GPS

